In vitro phosphorylation study of the arc two-component signal transduction system of Escherichia coli.

نویسندگان

  • D Georgellis
  • A S Lynch
  • E C Lin
چکیده

The ArcB and ArcA proteins constitute a two-component signal transduction system that plays a broad role in transcriptional regulation. Under anoxic or environmentally reducing conditions, the sensor kinase (ArcB) is stimulated to autophosphorylate at the expense of ATP and subsequently transphosphorylates the response regulator (ArcA). ArcB is a complex, membrane-bound protein comprising at least three cytoplasmic domains, an N-terminal transmitter domain with a conserved His292 residue (H1), a central receiver domain with a conserved Asp576 residue (D1), and a C-terminal alternative transmitter domain with a conserved His717 residue (H2). To study the phosphoryl transfer pathways of the Arc system, we prepared the following His-tagged proteins: H1, D1, H2, H1-D1, D1-H2, H1-D1-H2, and ArcA. Incubations of various combinations of Arc proteins with [gamma-32P]ATP indicated that H1, but not D1 or H2, catalyzes autophosphorylation; that H1-P transfers the phosphoryl group to D1 much more rapidly than to ArcA; and that D1 accelerates the transphosphorylation of H2. Finally, ArcA is phosphorylated much more rapidly by H2-P than by H1-P. Available data are consistent with a signal transduction model in which (i) reception of a membrane signal(s) triggers autophosphorylation of H1 at His292, (ii) the phosphoryl group can migrate to D1 at Asp576 and subsequently to H2 at His717, and (iii) ArcA receives the phosphoryl group from either His292 or His717, the relative contribution of which is regulated by cytosolic effectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONSTRUCTION OF RECOMBINANT PLASMIDS FOR PERIPLASMIC EXPRESSION OF HUMAN GROWTH HORMONE IN ESCHERICHIA COLI UNDER T7 AND LAC PROMOTERS

In order to study the periplasmic expression of human growth hormone (hGH) in Escherichia coli, the related cDNA was inserted in two expression plasmids carrying pelB signal peptide, one with lac bacterial promoter and the other with a bacteriophage T7-based promoter. The recombinant plasmids were moved to TG1 and BL21 strains of E. coli, respectively. To induce the expression systems, IPTG and...

متن کامل

Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system.

Escherichia coli senses and signals anoxic or low redox conditions in its growth environment by the Arc two-component system. Under those conditions, the tripartite sensor kinase ArcB undergoes autophosphorylation at the expense of ATP and subsequently transphosphorylates its cognate response regulator ArcA through a His --> Asp --> His --> Asp phosphorelay pathway. In this study we used variou...

متن کامل

The ArcB sensor kinase of Escherichia coli: genetic exploration of the transmembrane region.

The Arc two-component signal transduction system of Escherichia coli regulates the expression of numerous operons in response to respiratory growth conditions. Cellular redox state or proton motive force (Delta(H(+))) has been proposed to be the signal for the membrane-associated ArcB sensor kinase. This study provided evidence for a short ArcB periplasmic bridge that contains a His47. The disp...

متن کامل

Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation

Two-component signal transduction constitutes the predominant strategy used by bacteria to adapt to fluctuating environments. The KdpD/KdpE system is one of the most widespread, and is crucial for K+ homeostasis. In Escherichia coli, the histidine kinase KdpD senses K+ availability, whereas the response regulator KdpE activates synthesis of the high-affinity K+ uptake system KdpFABC. Here we sh...

متن کامل

System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids

SUMMARY Two-component signal transduction, featuring highly conserved histidine kinases (HKs) and response regulators (RRs), is one of the most prevalent signalling schemes in prokaryotes. RRs function as phosphorylation-activated switches to mediate diverse output responses, mostly via transcription regulation. As bacterial genomes typically encode multiple two-component proteins for distinct ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 17  شماره 

صفحات  -

تاریخ انتشار 1997